翻訳と辞書
Words near each other
・ Lieb–Oxford inequality
・ Lieb–Thirring inequality
・ Liechelkopf
・ Liechtenstein
・ Liechtenstein alcohol tax referendum, 1929
・ Liechtenstein Alps referendum, 1967
・ Liechtenstein at the 1936 Summer Olympics
・ Liechtenstein at the 1936 Winter Olympics
・ Liechtenstein at the 1948 Summer Olympics
・ Liechtenstein at the 1948 Winter Olympics
・ Liechtenstein at the 1952 Summer Olympics
・ Liechtenstein at the 1956 Winter Olympics
・ Liechtenstein at the 1960 Summer Olympics
・ Liechtenstein at the 1960 Winter Olympics
・ Lieb conjecture
Lieb's square ice constant
・ Lieb-Robinson bounds
・ Liebau
・ Liebbe, Nourse & Rasmussen
・ Liebe
・ Liebe Dein Symptom wie Dich selbst!
・ Liebe ist ...
・ Liebe ist ... 2
・ Liebe ist eine Rose
・ Liebe ist für alle da
・ Liebe ist für alle da Tour
・ Liebe macht blind
・ Liebe Sokol Diamond
・ Liebe zu Böhmen
・ Liebe, Babys und ein großes Herz


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lieb's square ice constant : ウィキペディア英語版
Lieb's square ice constant
}}}}
|-
|Algebraic form
|\frac
|}
Lieb's square ice constant is a mathematical constant used in the field of combinatorics to quantify the number of Eulerian orientations of grid graphs. It was introduced by Elliott H. Lieb in 1967.
==Definition==
An ''n'' × ''n'' grid graph (with periodic boundary conditions and ''n'' ≥ 2) has ''n''2 vertices and 2''n''2 edges; it is 4-regular, meaning that each vertex has exactly four neighbors. An orientation of this graph is an assignment of a direction to each edge; it is an Eulerian orientation if it gives each vertex exactly two incoming edges and exactly two outgoing edges. Denote the number of Eulerian orientations of this graph by ''f''(''n''). Then
: \lim_\sqrt()=\left(\frac\right)^\frac=\frac=1.5396007\dots
is Lieb's square ice constant.
Some historical and physical background can be found in the article Ice-type model.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lieb's square ice constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.